Definition – Dot product.

Definition

Let \bf{x} = (x_1, ..., x_m) and \bf{y} = (y_1, ..., y_m) be vectors in \mathbb{R}^m. The dot product (or scalar product) of \bf{y} and \bf{x} is defined to be the real number

\bf{x}\cdot\bf{y} = x_1 y_1 + ... + x_m y_m

Properties of the dot product

Let \textbf{x, y, z}\in{\mathbb{R}^m}, and k, l\in{\mathbb{R}}. The dot product has the following properties,

[Symmetry]: \bf{x}\cdot\bf{y} = \bf{y}\cdot\bf{x}

[Linearity]: (k\textbf{x} + l\textbf{y})\cdot\textbf{y} = k(\textbf{x}\cdot\textbf{z}) + k(\textbf{x}\cdot\textbf{z})

[Positivity]: \textbf{x}\cdot\textbf{x}>0,~\forall{\textbf{x}}\in{\mathbb{R}^m}\setminus{\{0\}}