Definition – Norm\length of a vector.

Definition

Let \mathbf{x} = (x_1, ..., x_m) be a vector in \mathbb{R}^m. We define the norm (or length) of x to be the positive square root of the dot product of \mathbf{x} with itself,

|\mathbf{x}| = \sqrt{\mathbf{x} \cdot{\mathbf{x}}} = \sqrt{x_1^2 + x_2^2 +, ..., + x_n^2}