Definition – Poisson distribution

Contents
1. Definitions
2. Derivation of the binomial distribution
3. Use of the binomial distribution
3. Mean.
4. Variance.

1. Definition

Let X_i be a random variable with domain \mathbb{N}. If

p(X=x) = \frac{e^{-\lambda} \lambda^x}{x!}

Where e is Euler’s constant. We write that X \sim Poisson(\lambda).

2. Derivation of the Poisson distribution

The Poisson distribution is the limit of the binomial distribution as n\rightarrow \infty. We will derive the pdf by taking this limit, and subsequently check that the conditions of a valid probability distribution are met after taking the limit. The reason we must do this is that when taking the limit (for example, n\rightarrow\infty), n never equals infinity (clearly), and so we must check that the conditions are still valid after assuming n = \infty (in very loose terms).

To derive the pdf of the Poisson distribution, we consider the limit,

\lim_{n\rightarrow\infty} \binom{n}{x}p^x (1-p)^{n-x} = \lim_{n\rightarrow\infty} \frac{n!}{x!(n-x)!}p^x (1-p)^{n-x}\quad\text{(1)}

Firstly, let \lambda = np \implies n = \frac{\lambda}{p}, p\neq 0. Thus, we can re-write \text{(1)} as

\lim_{n\rightarrow\infty} \frac{n!}{x!(n-x)!} (\frac{\lambda}{p})^x (1-\frac{\lambda}{p})^{n-x} \\\\ \Leftrightarrow \lim_{n\rightarrow\infty} \frac{\lambda^x}{x!}\frac{n!}{(n-x)! n^x} (1-\frac{\lambda}{n})^n (1-\frac{\lambda}{n})^{-x} \\\\ \Leftrightarrow (\lim_{n\rightarrow\infty} \frac{\lambda^x}{x!}) (\lim_{n\rightarrow\infty}\frac{n!}{(n-x)! n^x}) (\lim_{n\rightarrow\infty}(1-\frac{\lambda}{n})^n) \\ (\lim_{n\rightarrow\infty}(1-\frac{\lambda}{n})^{-x}) \quad\text{(2)}

We now evaluate each of these limits, and return to their product to determine the pdf.

  1. \lim_{n\rightarrow\infty} \frac{\lambda^x}{x!} = \frac{\lambda^x}{x!} as none of the terms depend on n.
  2. For \lim_{n\rightarrow\infty}\frac{n!}{(n-x)! n^x}, note that

\lim_{n\rightarrow\infty} \frac{n!}{(n-x)!n^x} = \lim_{n\rightarrow\infty} \frac{n}{n}\times\lim_{n\rightarrow\infty}\frac{n-1}{n}\times...\lim_{n\rightarrow\infty}\times\frac{n-k+1}{n}

But for each lim_{n\rightarrow\infty} \frac{n-i}{n}, we have by L’Hospital’s rule,

lim_{n\rightarrow\infty} \frac{n-i}{n} = lim_{n\rightarrow\infty} \frac{1}{1} = 1

Thus,

\lim_{n\rightarrow\infty} \frac{n!}{(n-x)!n^x} = \lim_{n\rightarrow\infty} \frac{n}{n}\times\lim_{n\rightarrow\infty}\frac{n-1}{n}\times...\lim_{n\rightarrow\infty}\times\frac{n-k+1}{n} = 1^{k-1} = 1

  1. \lim_{n\rightarrow\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda} based on the definition of Euler’s constant and a parameterisation \frac{1}{n} = \frac{-\lambda}{t}.

  2. \lim_{n\rightarrow\infty} (1-\frac{\lambda}{n})^{-x} = 1

And returning back to the product of limits in \text{(2)}, we arrive at

\lim_{n\rightarrow\infty} \binom{n}{x}p^x (1-p)^{n-x} = \frac{\lambda^x}{x!}\times 1\times e^{-\lambda} \times 1 = \frac{\lambda^x e^{-\lambda}}{x!}

3. Use of the Poisson distribution

We use the Poisson distribution when we want to determine the probability of an event P occurring x\in\mathbb{N} times, where each occurrence is independent from all the others, and P occurs at a rate of \lambda occurrences per unit of time.

4. Mean & Variance

  • E(X) = Var(X) = \lambda

Proof

To prove the mean and variance of the Poisson distribution we will use its moment generating function. The moment generating function for the Poisson distribution is,

\begin{array}{ccc} M(t) = E(e^{tx}) &=& \sum_{x=0}^\infty e^{tx}p(x) \\\\  &=& \sum_{x=0}^\infty e^{tx} \cdot \frac{e^{-\lambda} \lambda^x}{x!} \\\\ &=&e^{\lambda (e^t -1)} \end{array}

Differentiating once gives

M'(t) = \lambda e^t e^{\lambda (e^t -1)}

And twice,

M''(t) = \lambda e^t e^{\lambda (e^t -1)}+\lambda^2 e^{2t} e^{\lambda (e^t -1)}

And at t=0,

M'(0) = E(X) = \lambda

M''(0) = E(X^2) = \lambda + \lambda^2

So, we have that Var(X) = E(X^2) - E(X)^2 = (\lambda + \lambda^2) - \lambda^2 = \lambda, which completes the proof. \square