Definition – (Student’s) t-distribution.

Page contents
1. Definition

Definition

Let T be a random variable with pdf

p_T(t) = \frac{\Gamma(\frac{n+1}{2}) }{\sqrt{n\pi} \Gamma(\frac{n}{2})} (1+\frac{t^2}{n})^{-\frac{n+1}{2}}

In this instance, we say that T follows a t-distribution with degrees of freedom n\in\mathbb{N}\setminus{0}.

Derivation

Z \sim N(0,1) be normally distributed and let U \sim \chi_n^2 follow a Chi-square distribution with n degrees of freedom. We will derive the distribution of

X = \frac{Z}{\sqrt{\frac{U}{n}}} .

Firstly, as very simple application of the change of variable formula for U \sim \chi_n^2, with g(U) = \sqrt{\frac{U}{n}} = Y_1 gives

p_{Y_1}(y_1) \sim \frac{2}{2^{\frac{n}{2}}\cdot \Gamma(\frac{n}{2})} \cdot n^{\frac{n}{2}} x^{n-1} e^{-\frac{x^2}{2}}

Then, we can make use of the formula for the ratio of two random variables,

\begin{aligned} p(T = \frac{Z}{Y_1}) &= \int\limits_{-\infty}^{\infty} |y_1| p(y_1)p(y_1)dy_1 \\\\  &= \int\limits_{-\infty}^{\infty} y_1 (\frac{2n^{\frac{n}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} y_1^{n-1} e^{-\frac{n}{2} y_1^2}) (\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}}y_1^2)dy_1  \\\\ &= \frac{n^{\frac{n}{2}}}{2^{\frac{n-1}{2}} \Gamma(\frac{n}{2}) \sqrt{n\pi}} \int\limits_{-\infty}^{\infty}  y_1^n \cdot e^{-\frac{1}{2} (n+t^2)y_1^2}dy_1 \end{aligned}

But the integral can be worked out via substitution. Let y_1 = \sqrt{v}, then, the integral becomes

\frac{1}{2} \int\limits_{-\infty}^{\infty} v^{\frac{n-1}{2}} e^{-\frac{1}{2} (n+t^2)v}dv

Which is just a gamma distribution (without it’s normalising constant), with \alpha = \frac{n+1}{2} and \beta = \frac{n+t}{2}. This means that

\frac{1}{2} \int\limits_{-\infty}^{\infty} v^{\frac{n-1}{2}} e^{-\frac{1}{2} (n+t^2)v}dv = \frac{\Gamma(\frac{n+1}{2})}{2} (\frac{n+t^2}{2})^{-\frac{n+1}{2}}

\frac{n^{\frac{n}{2}}}{2^{\frac{n-1}{2}} \Gamma(\frac{n}{2}) \sqrt{n\pi}} \int\limits_{-\infty}^{\infty}  y_1^n \cdot e^{-\frac{1}{2} (n+t^2)y_1^2}dy_1 \\\\ = \frac{n^{\frac{n}{2}}}{2^{\frac{n-1}{2}} \Gamma(\frac{n}{2}) \sqrt{n\pi}} \cdot \frac{\Gamma(\frac{n+1}{2})}{2} (\frac{n+t^2}{2})^{-\frac{n+1}{2}}

Which, after cancelling out some of the factors, gives the pdf we are looking for,

p_T(t) = \frac{\Gamma(\frac{n+1}{2}) }{\sqrt{n\pi} \Gamma(\frac{n}{2})} (1+\frac{t^2}{n})^{-\frac{n+1}{2}} \quad \square