Theorem – Quadratic formula

Derivation of the quadratic equation.

Theorem

Given any equation of the form f(x) = ax^2 + bx + c, the roots, or zeroes of f are given by the formula,

x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}

Proof

Given an equation f(x) = ax^2 +bx +c, to find the roots of f is equivalent to finding all x such that ax^2 + bx + c = 0. We will also assume that a \ne{0}. It follows that,

\begin{aligned} ax^2 + bx + c &= 0 \\\Leftrightarrow x^2 + \frac{b}{a}x + \frac{c}{a} &=0  \\\Leftrightarrow x + (\frac{b}{2a})^2 +\frac{c}{a} - \frac{b^2}{(2a)^2} &= 0 \end{aligned}

Now, rearranging this equation we obtain,

\begin{aligned} \\\Leftrightarrow (x + \frac{b}{2a})^2 +\frac{c}{a} & = \frac{b^2}{4a^2} \\\Leftrightarrow (x + \frac{b}{2a})^2 & = \frac{b^2}{4a^2}-\frac{c}{a} \\\Leftrightarrow (x + \frac{b}{2a})^2 & = \frac{b^2}{4a^2}-\frac{4ac}{4a^2} \\\Leftrightarrow (x + \frac{b}{2a})^2 &= \frac{b^2 - 4ac}{4a^2} \\\Leftrightarrow x + \frac{b}{2a} & = \pm\sqrt{\frac{b^2 - 4ac}{4a^2}} \\\Leftrightarrow x + \frac{b}{2a} & = \pm\frac{\sqrt{b^2 - 4ac}}{2a} \\\Leftrightarrow x & = - \frac{b}{2a} \pm\frac{\sqrt{b^2 - 4ac}}{2a} \\\Leftrightarrow x & = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ~\square \end{aligned}

Thus, we have shown that, as long as a \ne{0}, a, b, c \in \mathbb{R}, and \sqrt{b^2 - 4ac} \geq 0,

\displaystyle{ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}

Notes

We can still find values of x if these conditions are not met, for example if a = 0, then x = -c, since ax^2 +bx +c=0 reduces to bx + c=0.

Furthermore, when b^2 - 4ac < 0, we can still find solutions to these equations using complex numbers. The development of which can be found here.